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Overview

1. Charge, orbital and spin ordering in half-doped manganites –
open questions.

2. Comparison of orbital and magnetic correlations (soft x-ray
resonant diffraction).

3. Coherent resonant x-ray diffraction:  exploring orbital domain
evolution and dynamics.
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Charge, orbital and magnetic order in half-doped manganites

Fundamental questions

• What drives charge/orbital order?

• Coupling between orbital and   
magnetic correlations?

• What sets the length scale for the   
correlation lengths?

Goodenough (1955)
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Resonant x-ray diffraction: a means for measuring subtle modulations
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• Element specific 

• Sensitive to atomic environment (lattice distortions, electron occupancy, spin)

• Enhances scattering (forbidden/nearly forbidden reflections, magnetic scattering)

fres ion ~ Σ<i |ε|n><n|ε|i>
E – Eres + iΓ/2

n

fion = f(Q) + f’(E) + if’’(E)

I = |Σ fione(iQ.r)|2

Q = 4πsinθ/λ

fres =  fres

fres =  fres

εi εf



Mn 2p -> 3d L-edge

E ~ 650 eV, λ ~ 19 Å
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D. J. Huang et al., PRL 92 087202 (2004)

C. W. M. Castleton and M. Altarelli, PRB 62, 1033 (2000).

Using L-edge diffraction would provide information on the 
type of orbital ordering as well as permitting “the effects of 
orbital ordering and Jahn-Teller ordering to be detected and 
distinguished from one another.”



Crystal is twinned with both [100] and [010] surface normal domains.  
Magnetic and orbital scattering observed at the same scattering angle
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Magnetic and orbital scattering not resolved in Q

a
Qorb = 2π/b (0,½,0)
Qmag = 2π/a (½,0,0)

(a ~ b)Qorb ~ Qmag
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“a” type domain “b” type domain

2θ ~ 124º
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orbital order appears to be correlated over a shorter length scale than magnetic order

E = 645 eV (L3 edge)

TN < T < TOO
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Temperature dependence

Direct comparison of orbital and magnetic superlattice reflections

AF
and CO/OO

CO/OO

T

x
c out of plane

T < TN

NSLS X1B (P. Abbamonte, L. Venema, G. Sawatzky)

K. J. Thomas, J. Hill, S. Grenier, P. Abbamonte, M. v. Veenendaal, G. Sawatzky et al. PRL 92, 237204 (2004).

c out of the diff. plane
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Magnetic and orbital resonant line shapes

Orbital scattering: 
TOO > T > TN (x 100)

Magnetic scattering
T < TN

Diffracted intensity at Q = (½,0,0)/(0,½,0) Pr0.6Ca0.4MnO3
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K. J.  Thomas et al. PRL 92, 237204 (2004).

2.5 eV

c out of the diff. plane
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Comparison of magnetic and orbital peak widths:  c in the diff. plane



Magnetic and orbital order for different doping:  Pr1-xCaxMnO3



Difference between magnetic and orbital correlation lengths
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Difference in correlation lengths

Could the domains be anisotropic?

Transverse scans through the orbital 
and magnetic
Bragg peaks show a 
similar difference in widths

K-edge measurements show 
orbital domains are isotropic

ξmag

ξorb

However . . .

“b” oriented domain
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ξmag
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Transverse scans
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Characteristic orbital diffraction in half-doped manganites

Energy (eV)

Pr0.6Ca0.4MnO 3
Pr0.5Ca0.5MnO 3
Nd0.5Sr0.5MnO 3

• Improve calculations
to isolate features 
in the spectra
(crystal field and
hybridization effects)

• Similarity of spectra
suggest a “thumbprint”
on orbital order
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Probing orbital order at the oxygen K-edge: x > 0.5 manganites

P. G. Radaelli et al. PRB 59 14440 (1999)

Bi1-xCaxMnO3  (x ~ 2/3)

Mn K-edge studies:  S. Grenier and V. Kiryukhin, unpublished

• Electronic models suggest significant hole density on the oxygen sites –
can it be measured in a diffraction signal?

O K-edge ~ 540 eV Only long periodicities can be studied
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What is the nature of the short-range orbital order?

Pr0.6Ca0.4MnO3



Probing orbital
domains with
coherent resonant diffraction 1/ξdomain
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I. K. Robinson PRB 52, 9917 (1995)



charge order orbital order

C. S. Nelson et al PRB 66 134412 (2002)

Coherent x-ray diffraction of charge and orbital domains at the K-edge

ESRF ID20

Pr0.6Ca0.4MnO3



Coherent Resonant Diffraction of Orbital Domains with Soft X-rays

K. Chesnel and M. Pfeiffer (ALS), J. Thomas and J. Hill (BNL), 
J. Turner and Steve Kevan (Univ. of Oregon)

Advanced Light Source Beamline 12

Orbital speckle appears static to within 20 K of TOO
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Future experiments

Evolution of dynamics as T        Tc

Comparison of magnetic and orbital speckle patterns

Thermal cycling near Tc – are the orbital domains pinned?



Summary
Resonant orbital and spin diffraction in half-doped manganites

• Direct comparison of magnetic and orbital correlations

Difference between ξorb and ξmag suggests magnetic correlations not 
completely determined by orbital order

• L-edge diffraction in manganites combines spectroscopy with sensitivity to 
correlations, providing detailed information about the 3d electrons and a 
potential test of ground state models

On-going and future projects

• Coherent diffraction
• Orbital/spin correlations away from half-doping (Mn and O edges)
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Experimental

• Combine high spatial resolution (< 1 μm) with resonant diffraction/microscopy
- Overcome domain effects
- Nanopatterning of transition metal oxides

• Spectrometer design
- High level of reproducibility
- Develop strategies for sample and spectrometer alignment (permits

grazing incidence surface diffraction)
- Controllable resolution in Q-space

Theoretical

• Connect the resonant line shapes with meaningful quantities (hybridization,
electronic structure)

Perspectives


